Search for Vector-Like Quarks with ATLAS

Kevin Black Boston University

Higgs Boson

- In the Standard Model (SM), elementary particles get a mass by interacting with the Higgs field
- The SM matter particles are chiral so an explicit mass term is forbidden by the SM gauge symmetry
- Are there other forms of matter?

Phys. Lett. B 716 (2012) 1-29

Context: Heavy Quarks and the Naturalness problem

- The existence of a scalar Higgs Boson at 125 GeV is established
- Well known theoretical problem that a scalar particle has large corrections to its mass from loop corrections
- Is there a principle, symmetry, and/or new particles that render it natural?

$$m_{\rm phys}^2 = m_{\rm bare}^2 + g\Lambda^2 \ll \Lambda^2$$

FINE TUNING

Heavier Generations?

- Why 3 generations?
- Mass hierarchy is accommodated by the SM but not predicted (Higgs Yukawa couplings)
- Are there more?

What do we know already?

- Higgs boson measurements from the LHC strongly disfavor another chiral generation of quarks
- A new heavy chiral quark would influence Higgs production and naively increase the crosssection by ~10
- A new heavy chiral quark would influence the decay and suppress the diphoton decay by a factor of ~100

[Kuflik et al., .., PRL 110 (2013)]

What is a Vector Like Quark

- Unlike SM (chiral) quarks the left and right handed fields transform the same way under SU(2)
- They have a Dirac mass without the Higgs

$$L_{mass} \sim M(\bar{\Psi}_L \Psi_R + \bar{\Psi}_R \Psi_L)$$

 They couple to SM quarks via Yukawa-Like interactions

$$L_{Yuk} \sim \frac{\lambda_v}{\sqrt{2}} (q_L \Psi_R + \bar{\Psi}_R q_R)$$

- The couplings depend upon the representation of SU(2)
 - singlet, doublet, triplet

VLQ Motivation

VLQ top-partners can control the Higgs mass instability

Arise in many BSM models

- composite Higgs
- some models SUSY
- Extra dimensions

Large Hadron Collider

20 fb⁻¹ of integrated luminosity recorded and utilized at 8 TeV

ATLAS Detector

- Inner Detector (tracker): Pixels, Silicon Strips, Transition Radiation Detector
- Calorimeters: LAr (EM + hadronic forward), TileCal (hadronic)
- Forward Detectors: LUCID< ZDZ, ALFA
- Muon Spectrometer: Drift Tubes, resistive plate chambers, thin gap chambers, and cathode strip chambers
- 4 super-conducting magnets:
 - Solenoid (ID) + 3 Toroid Magnets for Muon Spectrometer

Production

Decays

- Decays depend on assumed charge and structure (charge 2/3 or 5/3)
 - singlet, doublet, triplet
- Does not obey GIM mechanism - tree level flavor changing neutral currents

Huge Number of Final States

Channel	Multi-leptons	Lepton+jets	Channel	Multi-leptons	Lepton+jets
tHWb tH tZ $(Z \rightarrow jj(bb))$ tH tZ $(Z \rightarrow \nu\nu)$ tH tZ $(Z \rightarrow ll)$	$2l(\mathrm{OS}) + \mathrm{MET} + 4b$ $2l + \mathrm{MET} + 2j + 4b$ $2l + \mathrm{MET} + 4b$ $4l + \mathrm{MET} + 4b \text{ or } 3l + \mathrm{MET} + 2j + 4b$	l+ MET+2 j +4 ll +MET+ 4 j +4 ll + 2 j +MET+4 l	tHWb $ tH tZ (Z \to jj(bb)) $ $ tH tZ (Z \to \nu\nu) $	4l+MET+ $2b$ or $2l$ (SS)+MET+ $4j$ + $2b4l$ +MET+ $2j$ + $2b$ or $2l$ (SS)+MET+ $6j$ + $2b4l$ +MET+ $2b$ or $2l$ (SS)+MET+ $4j$ + $2b$	l+MET+6j+2b l+MET+8j+2b l+MET+6j+2b
$tZ tZ (ZZ \rightarrow jj(bb))$	2l(OS)+MET+2j+2b	l+MET+ $4j$ + $2b$:	tH tZ ($Z \rightarrow ll$)	6l+MET+2b or $3l+MET+6j+2b$	
tZ tZ (Z $Z \rightarrow \nu \nu$)	2l(OS)+MET+2b	l+2 j +MET+2 b	tHtH ($H \rightarrow W^+W^-$)	6l+MET+2b or $3l+MET+6j+2b$	l+MET+10 j + 2 b
$tZ tZ (ZZ \rightarrow ll)$	4l+MET+ 2b or 3l+2j+MET+2b	La remanda de el	tHtH ($H ightarrow W^+W^-$, $bar{b}$)	4l+MET+ $4b$ or $2l$ (SS)+MET+ $4j$ + $4b$	l+MET+6 j + 4 b
$tHtH (H \rightarrow bb)$	2l(OS)+MET+6b	l+MET+2j+6l			
WbWb	2l(OS)+MET+2b	l+MET+2j+2b			
WbtZ ($Z o jj(bb)$)	2l+MET+2j+2b	l+MET+4 j +2 b			
WbtZ ($Z \rightarrow \nu \nu$)	2l+MET+2b	l+MET+2 j +2 b			
WbtZ ($Z ightarrow ll$)	4l +MET + 2b or 3l +MET + 2j + 2b				

+ Single Production Decays!

Recasting to a Triangle

ATLAS Strategy

- For Run I -
 - dedicated searches in corners of decay space that are optimized for particular decays eg. tZ, tH,bW
 - Organize according to lepton multiplicity: single lepton, dilepton (divided into those with Z boson and same sign), and trilepton
 - Combine the analysis statistically for maximal coverage
- CMS type strategy some dedicated searches and some more general inclusive searches

VLQ Analysis

- There are many searches that cover different hypothesis and final states:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ ExoticsPublicResults
- I will mostly cover one of these in detail (that my student and I worked on) and then briefly discuss a couple of the other channels and the combination

Z-tag Analysis

- Divide Analysis into Dilepton and Trilepton (or more) Channels
- Start by reconstructing a Z boson in the opposite sign same flavor channel
- Examine variables that are ~ model independent and give good separation between signal and background
- Some model dependence in the single production mode

Kinematic Variables

- Main background at preselection stage is Z+jets (low b-jet multiplicity and relatively low pt of Z boson)
- Signal has high Pt Z boson and multiple b-jets

Kinematic Variables

- For heavy quark production expect in general high pt objects (as seen in the sum of all reconstructed jets and leptons)
- Invariant masses to recapture full or partial exotic quark invariant mass

Selection Overview

Event selection					
Z candidate preselection					
≥ 2 central jets					
$p_T(Z) \ge 150 \text{ GeV}$					
Dilepton	channel	Trilepton channel			
= 2 lep	otons	≥ 3 leptons			
≥ 2 <i>b</i> -tag	ged jets	≥ 1 b -tagged jet			
Pair production	Single production	Single production Pair production			
$H_T(jets) \ge 600 \text{ GeV}$	≥ 1 fwd. jet	_ ≥ 1 fwd. jet			
Final discriminant					
m(Z	(b)	$H_T(jets + leptons)$			

- Dilepton and Trilepton Start with Same event selection and then diverge on lepton and b-jet multiplicity
- Exploit then kinematics of process for single production (forward high energy jets)

Data/MC agreement

- Use the low H_T region (< 600 GeV) and Z P_T (< 150 GeV) region to compare simulation with data in a region depleted from signal
- Note change in signal composition moving from 1 to 2 b-tagged jets

Z PT Reweighting

- Notice a slight disagreement in out of the box agreement between Z boson transverse momentum
- Use single b-jet tag in order to derive correction for 2 b-jet tag (check 0 b-jet bin for closure)

Data Driven Correction

 Two corrections made:
 Z+jets MC seen to under predict background in the 1,2

	$Z+ \ge 2$ jets $(N_{\text{tag}}-1)$	$p_{\rm T}(Z) > 150 {\rm GeV}$	$H_{\rm T}({\rm jets}) > 600~{\rm GeV}$
Z+light (no p _T corr.)	24000 ± 1500	1940 ± 190	104.6 ± 8.6
Z +light (p_T corr.)	23600 ± 1500	1700 ± 150	89 ± 12
Z+bottom (no p _T corr.)	24100 ± 1700	1970 ± 240	82.5 ± 8.0
Z +bottom (p_T corr.)	23600 ± 1700	1730 ± 160	71 ± 11
tĒ	2850 ± 230	68 ± 11	8.0 ± 2.9
Other SM	1250 ± 370	180 ± 60	17.9 ± 5.7
Total SM (no p _T corr.)	52200 ± 2300	4150 ± 310	213 ± 13
Total SM (p _T corr.)	51300 ± 2300	3690 ± 230	186 ± 16

Z pt correction ~10%

jet $Z P_T < 150 \text{ GeV}$

region by ~15, 20%

Trilepton Data/MC Agreement Agreement Agreement Agreement AGREE ATLAS 350 ATLAS 350 ATLAS 350 ATLAS 350 ATLAS

- After third lepton requirement dominated by WZ
- Apply a k-factor from NLO program (1.18) and get reasonable agreement in various kinematic variables

Systematic Errors

Enactional association ((f)), dilentes about						
Fractional uncertainties (%): dilepton channel						
	Z+jets	$t\bar{t}$	Other bkg.	Total bkg.	$Bar{B}$	$T\bar{T}$
Luminosity	1.4	2.8	2.8	0.3	2.8	2.8
Cross section	5.5	6.4	29	0.7	-	-
Jet reconstruction	13	10	14	11	2.0	2.1
b-tagging	9.1	13	9.9	5.7	7.2	5.9
e reconstruction	2.9	16	5.9	4.6	2.5	1.5
μ reconstruction	3.8	7.8	7.2	4.2	3.2	1.3
Z+jets $p_T(Z)$ correction	9.0	-	-	6.5	-	-
Z+jets rate correction	6.9	-	-	5.0	-	-
MC statistics	5.0	25	12	5.4	2.4	2.9

Fractional uncertainties (%): trilepton channel						
	WZ	$t\bar{t} + V$	Other bkg.	Total bkg.	$B\bar{B}$	$T\bar{T}$
Luminosity	2.8	2.8	2.8	2.8	2.8	2.8
Cross section	17	30	8.9	21	-	-
Jet reconstruction	5.4	1.2	8.1	3.1	4.0	1.8
b-tagging	13	3.6	13	6.7	5.6	5.5
e reconstruction	9.3	3.9	37	11	5.9	12
μ reconstruction	14	3.9	18	4.2	6.2	5.7
MC statistics	11	3.1	27	6.6	4.8	8.3

Final Variables in Pair Production Hypothesis

- Good agreement with data/mc in both dilepton and trilepton analysis
- Unfortunately no evidence of pair production

Single Production Results

- Single production final selection also consistent with background only hypothesis
- Also proceed to set limits

Limits, Limits, Limits

For any branching ratio

Single Production

W corner of the T Plane

- Hadronic W candidate: resolved and merged types.
- Other "tight" criteria to exploit high p_T(W) but wide separate between W and b-quarks in signal.

- Preselection: = 1 e or μ, ≥ 4 jets (R = 0.4)
- ≥ 1 b-tagged jet (70%); also label jet w/ 2nd highest b-tag weight as b-tagged. p_T(b_{1,2}) > 160, 80 GeV.

TT→W⁺bW⁻b (600)

 $\Delta R(l,v)$

///// Total Bkg unc.

Wb+X

- ME_T > 20 GeV and ME_T + M_T > 60 GeV
- H_T(lep+jets+ME_T) > 800 GeV.

arXiv:1505.04306

W corner of T plane

Selection	Requirements
Preselection	Exactly one electron or muon $E_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ GeV}, E_{\mathrm{T}}^{\mathrm{miss}} + m_{\mathrm{T}}^{W} > 60 \text{ GeV}$ $\geq 4 \text{ jets}, \geq 1 b\text{-tagged jets}$
Loose selection	Preselection \geq 1 $W_{\rm had}$ candidate (type I or type II) $H_{\rm T} >$ 800 GeV $p_{\rm T}(b_1) >$ 160 GeV, $p_{\rm T}(b_2) >$ 110 GeV (type I) or $p_{\rm T}(b_2) >$ 80 GeV (type II) $\Delta R(\ell, \nu) <$ 0.8 (type I) or $\Delta R(\ell, \nu) <$ 1.2 (type II)
Tight selection	Loose selection $\min(\Delta R(\ell,b_{1,2})) > 1.4, \min(\Delta R(W_{\text{had}},b_{1,2})) > 1.4$ $\Delta R(b_1,b_2) > 1.0 \text{ (type I) or } \Delta R(b_1,b_2) > 0.8 \text{ (type II)}$ $\Delta m < 250 \text{ GeV (type I) [see text for definition]}$

- Type 1 single jet with P_T> 400 GeV
- Type 2 two jets with invariant mass 60-120 GeV, $P_T > 250$ GeV of dijet system $\Delta R(j,j) < 0.8$

W corner of T Plane

top pair production, differential cross section

- Main backgrounds tt+jets, W/Z+jets
 - Taken from simulation but reweighted based on top and V+jet differential cross-section measurements
- Smaller backgrounds

 (multijet events with misidentified lepton, diboson +jets, and tt+V)

Phys. Rev. D 90 (2014) 072004

W corner of the T Plane

- Assuming BR(Wb) = 100%, exclude m_T < 770 (795) GeV, obs (exp).
- Limits also apply to Y(-4/3) quark.

arXiv:1505.04306

H corner of the T plane

- Targets HtHt-like final states. Complements Wb+X.
- High (5, ≥6) jet and b-jet (2, 3, ≥4) multiplicity.
- Study H_T distribution in six categories:

Also, divide 4⁺b into high and low M_{bb} (min dR pair)

arXiv:1505.04306

H corner of T Plane

Low S/B categories used to constrain uncertainties (e.g. JES, b-tagging, tt+HF norms)

Combined Limits

- Each analysis designed for somewhat different corner of phase space
- Combine limits across the branching ratio plane in both T and B decay hypothesis
- Observation slightly better than expected limits

Projections for Run II and beyond

Collider	Luminosity	Pileup	3σ evidence	5σ discovery	95% CL		
top-partner pair production							
LHC 14 TeV	$300 \; \mathrm{fb^{-1}}$	50	1340 GeV	$1200~{ m GeV}$	1450 GeV		
LHC 14 TeV	3 ab ⁻¹	140	1580 GeV	1450 GeV	1740 GeV		
LHC 33 TeV	3 ab ⁻¹	140	2750 GeV	2400 GeV	3200 GeV		
top-partner single production							
LHC 14 TeV	300 fb ⁻¹	50	1275 GoV	1150 GeV			
LHC 14 TeV	$3 \mathrm{~ab^{-1}}$	140	1130 GeV	1000 GeV			
LHC 33 TeV	$3 \mathrm{~ab^{-1}}$	140	1350 GeV	1220 GeV			
bottom-partner pair production							
LHC 14 TeV	$300 \; {\rm fb^{-1}}$	50	1210 GeV	$1080~\mathrm{GeV}$	$1330~{ m GeV}$		
LHC 14 TeV	3 ab ⁻¹	140	1490 GeV	1330 GeV	>1500 GeV		
LHC 33 TeV	300 fb ⁻¹	50	$> 1500~{ m GeV}$	$> 1500~{ m GeV}$	$> 1500~{ m GeV}$		
Charge 5/3 fermion pair production							
LHC 14 TeV	300 fb ⁻¹	50	1.51 TeV	1.39 TeV	1.57 TeV		
LHC 14 TeV	$3 \mathrm{~ab^{-1}}$	140	1.66 TeV	1.55 TeV	1.76 TeV		
LHC 33 TeV	$3 { m ~ab^{-1}}$	140	2.50 TeV	2.35 TeV	2.69 TeV		

 Note these are SNOWMASS projections (not ATLAS results)

arXiv:1311.0299

Conclusions

- Large program to search for vector like quark in different final states under different production and decay hypothesis
- No Evidence for VLQ production at ATLAS
- Early Search Topic as increase in energy should quickly surpass run I sensitivity
- Check Run I excesses try to remain as broad as possible
- Ultimate Run II sensitivity ~ 2 TeV

H corner of B plane

Re-optimize Ht+X analysis for the B plane.

 Require p_T of leading two b-jets > 150 GeV.

Increased importance of 5 jet category compared to the T hypothesis case.

H corner of B Plane

Exclusions for 100% Hb and SU(2) singlet hypotheses.

 For BR(Hb) = 100%, exclude m_B < 700 (625) GeV, obs (exp).

 For BR(Hb) ≈ BR(Zb) ≈ 25%, exclude m_B < 735 (635) GeV, obs (exp).

Same Sign Signature

- Same-sign dilepton final state originally motivated by 4W signature from BB & XX.
- Later added 3rd lepton channel, and interpreted also for TT.
- Challenges: fake leptons and Q mis-Id.

H_T [GeV] arxiv:1504.04605

arxiv:1504.04605

Definitions of event categories (signal regions)

SRVLQ6:

Exp: 4.3 ± 1.5

Obs: 12

SRVLQ7:

Exp: 1.1 ± 1.0

Obs: 6

	Name							
$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu^{\pm}\mu^{\pm} + eee + ee\mu + e\mu\mu + \mu\mu\mu, N_j \ge 2$								
$400 < H_{\rm T} < 700 GeV$	$N_b = 1$	$E_{\mathrm{T}}^{\mathrm{miss}} > 40~\mathrm{GeV}$	SRVLQ0					
	$N_b = 2$		SRVLQ1	SR4t0				
	$N_b \geq 3$		SRVLQ2	SR4t1				
	$N_b = 1$	$40 < E_{\rm T}^{\rm miss} < 100 GeV$	SRVLQ3					
		$E_{\rm T}^{\rm miss} \ge 100~GeV$	SRVLQ4					
$H_{\rm T} \geq 700~GeV$	$N_b = 2$	$40 < E_{\rm T}^{\rm miss} < 100 GeV$	SRVLQ5	SR4t2				
		$E_{\rm T}^{\rm miss} \ge 100~GeV$	SRVLQ6	SR4t3				
	$N_b \geq 3$	$E_{\rm T}^{\rm miss} > 40~{ m GeV}$	SRVLQ7	SR4t4				

Exclusions for SU(2) singlet T and B hypotheses.

 For BR(Ht) ≈ BR(Zt) ≈ 25%, exclude m_T < 620 (660) GeV, obs (exp). For BR(Hb) ≈ BR(Zb) ≈ 25%, exclude m_B < 590 (690) GeV, obs (exp).

arxiv:1504.04605

W corner of B plane

$$pp \to X\bar{X} \to tW^+\bar{t}W^- \to W^+W^+W^-W^-b\bar{b}$$

- Examine also higher background channels
- Also check the one lepton channel in the VLQ interpretation of the 2.5 sigma excess
- 12 variable BDT trained to maximize sensitivity

arXiv:1505.04306

45 arXiv:1505.04306

BDT performance

Limits from B->TW Search single lepton

 For BR(Hb) ≈ BR(Zb) ≈ 25%, exclude m_T < 640 (505) GeV, obs (exp). For BR(Wt)=100%, exclude m_x < 840 (780) GeV, obs (exp).

arXiv:1505.04306

Coupling to Light Quarks?

- VLQ coupling to light generations: single production from valence quarks.
- Search for Wq and Zq resonances.

ATLAS-CONF-2012-137 [7 TeV, 4.6/fb] PLB 712 (2012) 22 [7 TeV, 1.0/fb]

 SS+ 1 b-jet signature still possible w/ BR(cW) ≠ 0.

